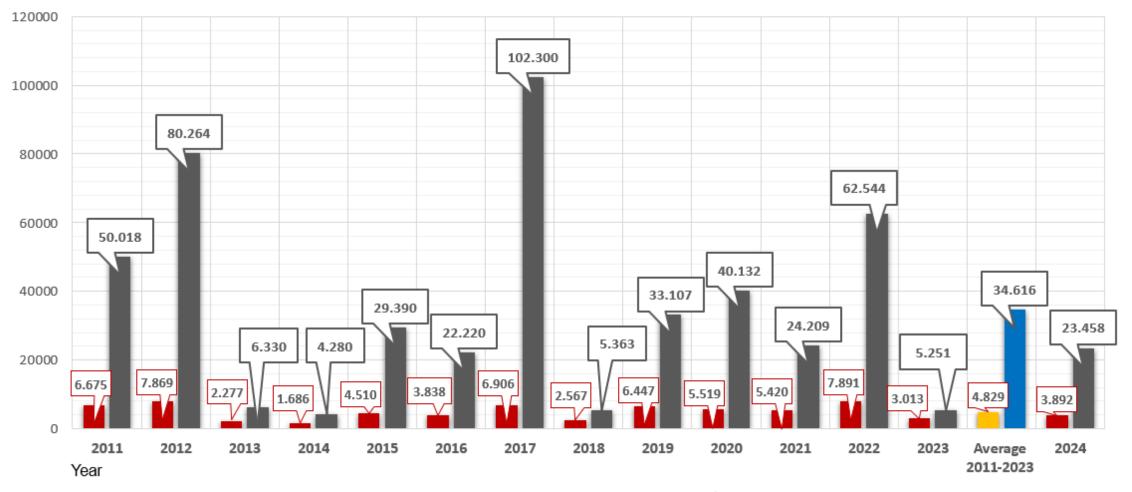


Remote Sensing for Assessing Vegetation Fuels in Wildfire Risk and Propagation Modelling

Sven Gotovac; Paula Muslim; Ante Ivanović; Ana Šarić Gudelj; Ante Sanader

Problem - The Escalating Threat of Wildfires

- Wildfires are intensifying globally, especially in Mediterranean ecosystems, driven by climate extremes, prolonged drought, and fuel buildup.
- Traditional detection and risk assessment (watchtowers, manual mapping) lack spatial coverage and real-time capability.
- Remote sensing technologies, particularly UAVs and satellites, now enable scalable, non-invasive, and realtime wildfire monitoring.
- Accurate input data—fuel load, vegetation type, and moisture content—is essential for fire modeling and early warning systems.



Overview of fire data from 2011. to 2024.

Period: From 01.01. to 31.12. – 2011. to 2024.

Overview of fire data in 2024/2023.

Report: National firefighting command and coordination centre 193 about fires from 01.01. to 31.12.2023.

Types of fires	Outdoor Fires	Wildfires	Burnt surface ha	Fire in/on the building	Vehicle fire	Total number of fires			Operation of air force on wild fires
Total:	5.475	3.013	5.251	3.931	1.008	10.414	21	166	33
							Firefighter 0	Firefighter 27	

Report: National firefighting command and coordination centre 193 about fires from 01.01. to 31.12.2024.

	Types of fires	Outdoor Fires	Wildfires	Burnt surface ha	Fire in/on the building	Vehicle fire	Total number of fires			Operation of air force on wild fires
	Total:	6.669	3.892	23.458	3.887	1.075	11.631	26	178	91
•								Firefighter 0	Firefighter 26	

Data comparison 2024. / 2023.	21,81% 29,17%	346,73% -1,12%	6,65%	11,69%	23,81%	7,23%	175,76%
-------------------------------------	---------------	----------------	-------	--------	--------	-------	---------

Fire season 2024/2023 only

Year	Number of fires	Burnt area (ha)
2023 (June - September)	1.300	2.520
2024 (June - September)	1.981	15.154
COMPARISON:	52.38 %	501.35%

CONSEQUENCES

Major material damage Landscape destruction, soil erosion

Habitat loss

Negative impact on tourism

Objectives and Research Focus

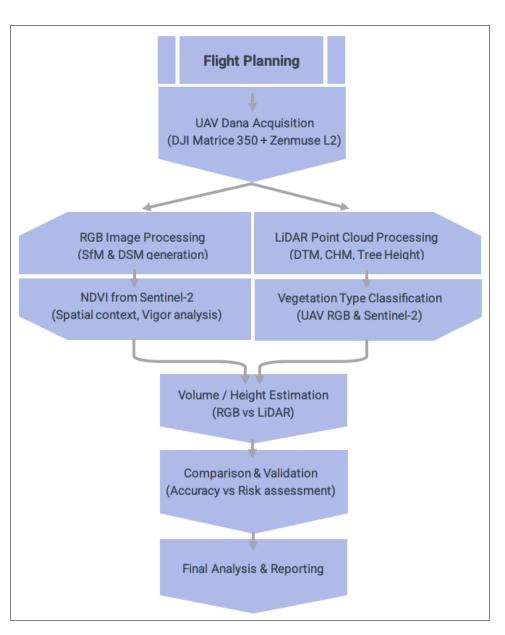
Research Goals and Hypothesis:

- Develop a multi-platform remote sensing framework combining UAV and Sentinel-2 data.
- Accurately estimate:
 - Fuel mass (via UAV-LiDAR and photogrammetry)
 - **Vegetation type** (via RGB/multispectral imagery + ML classifiers)
 - Live Fuel Moisture Content (LFMC) (via spectral indices: NDVI, NDWI)
- Integrate these parameters into fire propagation models: FARSITE, FlamMap, etc.
- Evaluate methodology across Mediterranean landscapes for scalability, reliability, and operational readiness.

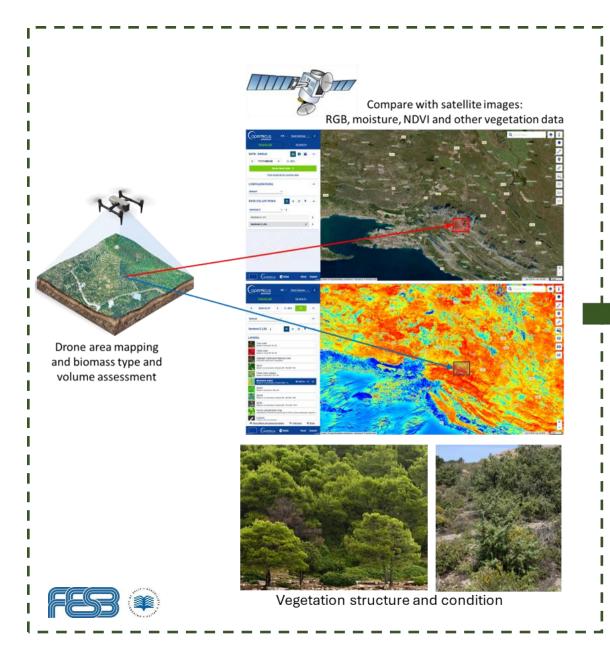
Methodological Framework

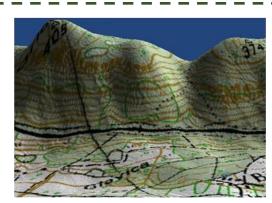
Satellite Imagery (Sentinel-2, MODIS, Landsat):

- Used to assess vegetation health and dryness (NDVI, NDWI NDMI, EVI).
- 13-band multispectral data enables regional-scale classification and moisture trend analysis.
- Ideal for large-area risk mapping and monitoring over time.

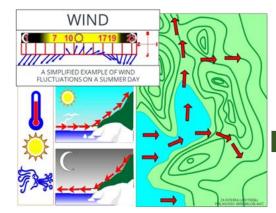

UAV-Based Sensing (RGB + LiDAR):

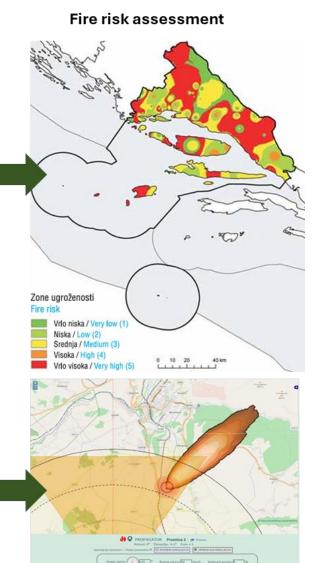
- DJI Matrice 350 RTK with Zenmuse L2 sensor used for 3D canopy structure.
- Structure-from-Motion (SfM) and LiDAR for canopy height, tree volume, biomass proxies.
- Machine Learning (Random Forest, SVM) applied to classify vegetation types from high-res images.




Fire Simulation Software Integration:

- Fuel data transformed into spatial fuel models used by:
 - BehavePlus estimates fireline intensity, spread rate
 - FlamMap / FARSITE landscape-scale fire simulation


Methodological Framework



Digital Elevation Model

Vegetation structure and condition, canopy type, fuel load, and moisture content spatial assessment

Wind speed and direction, air humidity, and temperature

Fire propagation estimation

Conclusion and Strategic Outlook

From Research to Real-Time Decision Support

Integrated remote sensing approaches provide a scalable, high-resolution foundation for next-gen wildfire intelligence systems.

Supports **science-based planning**: from prevention (fuel maps), to active fire suppression (propagation prediction), to post-fire analysis.

Future direction:

Real-time UAV monitoring + satellite data fusion

Cloud-based AI for continuous learning and fire risk forecasting

Integration into operational platforms used by firefighting authorities

FILECH

Any Questions?

